Napkollektoros rendszerek

Az Ezermester hasábjain többször foglalkoztunk a napkollektorok felhasználási módjaival. A medencefűtéstől kezdve a használati melegvíz előállításán keresztül a fűtés rásegítésig. Ha napkollektorral szeretnénk melegvizet előállítani, minden esetben rendszerben kell gondolkoznunk. Ehhez nyújtunk rövid, gyakorlatias összefoglalót.

A szoláris melegvíz-termelő rendszerek általában az alábbi fő részekből állnak:

- napkollektorok, amelyek elnyelik és hővé alakítják a Nap sugárzott energiáját
- tárolók, melyek a napkollektorokkal termelt hőt melegvíz formájában tárolják, napsütésmentes időszakokra
- működtető, szabályozó, biztonsági és ellenőrző berendezések, szerelvények. Ide tartozik a keringtető szivattyú, az automatika, a tágulási tartály, a biztonsági szelep, a nyomásmérő, a hőmérők és az egyéb szerelvények
- csővezeték rendszer, mely a kollektort köti össze a tárolóval

A szoláris melegvíz-termelő rendszerek egy vagy kétkörösek lehetnek. Egykörös rendszer esetén a kollektorban közvetlenül a felmelegítendő használati víz kering. Az ilyen rendszer csak a nyári félévben használható, mivel télen a 0°C alatti hőmérséklet esetén a kollektorban a víz megfagyna. A rendszer előnye az egyszerűség. Hátránya a fagymentes időszakra korlátozott alkalmazhatóság, valamint a kollektorkörben jelentkező vízkövesedés, lerakódás veszélye.
Kétkörös rendszernél a kollektorkör a használati melegvíz hálózattól elválasztott külön kör, amelyben megfelelő minőségű fagyálló folyadék kering. A használati melegvíz felmelegítése hőcserélőben történik. Az ilyen rendszerek egész évben biztonsággal használhatók. A kétkörös rendszer előnye a nagyobb éves energiahozam, a megbízható, lerakódást, vízkövesedést kiküszöbölő üzem, míg hátrányuk a hőcserélő miatti nagyobb beruházási költség.

Magas hőmérséklet

Talán a legfontosabb, amire egy napkollektoros rendszer megvalósítása során ügyelni kell, az a kollektor körben előforduló igen magas hőmérséklet. A mai korszerű napkollektorok maximális belső, üresjárati hőmérséklete elérheti a 180-200°C-ot is. Ha ilyen üresjárat után elindul a kollektor köri keringtetés, akkor rövid ideig ez a magas, 100°C feletti hőmérséklet jelenik meg a teljes rendszerben. Minden beépített elemnek olyannak kell tehát lennie, hogy ezt károsodás nélkül elviselje.

Magas nyomás

Mivel a napkollektorokban nagyon magas hőmérséklet állhat elő, ezért a hőhordozó közeg forrását csak úgy lehet elkerülni, ha a rendszert viszonylag magas, 4-5 bar üzemi nyomásra töltik fel. A nyomás emelésével ugyanis a forráspont is növekszik. Ezért nem a fűtési rendszerekre jellemző 2,5 bar, hanem 6 bar nyitónyomású biztonsági szelepet kell beépíteni. Ez viszont természetesen azt is jelenti, hogy valamennyi rendszerelemnek bírnia kell a 6 bar nyomást. Elsősorban a tágulási tartály kiválasztására kell ügyelni, hiszen az általánosan alkalmazott fűtési tágulási tartályok többsége csak ennél alacsonyabb nyomással terhelhető.

Tágulási tartály méretének megválasztása

A hagyományos fűtési rendszerekben a hőhordozó közeg általában víz, a maximális hőmérséklet pedig nem magasabb 90°C-nál, ezért a zárt tágulási tartály méretének megállapítása viszonylag egyszerű. A kollektoros rendszerek azonban ehhez képest "halmozottan hátrányos" helyzetben vannak. A hőhordozó közeg fagyálló folyadék, amelynek a hőtágulási együtthatója magasabb a víznél, a hőmérséklet maximális értéke magasabb, a kollektorokban elérheti a 180-200°C-ot is, de rövid időre akár a hideg ágban is meghaladhatja a 120-140°C-ot.

Fagyálló folyadék

A napkollektoros rendszereket az egész éves használat miatt fagyálló hőátadó folyadékkal kell feltölteni. Fontos, hogy erre a célra csak nem mérgező fagyálló alkalmazható. Erre egészségvédelmi szempontból van szükség, hiszen, ha egy használati-melegvíz készítő rendszerben kilyukad a hőcserélő, akkor a fagyálló az ivóvíz hálózatba kerülhet. A kollektoros rendszerekben általában propilénglikol-víz keveréket alkalmaznak, amely - amellett hogy nem mérgező - biológiailag teljes mértékben lebomlik, ezért nem terheli a környezetet sem.

Csővezeték mérete

Napkollektoros rendszerek csővezetékét ugyanúgy kell méretezni, mint a hagyományos rendszerekét. Nem szabad azonban elfeledkezni arról, hogy a szállított közeg nem víz, hanem fagyálló folyadék, aminek a viszkozitása - különösen alacsony hőmérsékleten - lényegesen magasabb, mint a víznek. A kézikönyvekben megadott csővezeték nyomásveszteség diagramok, valamint a szivattyú jelleggörbék is víz közegre vannak megadva, ezek tehát korrekció nélkül nem alkalmazhatók. A magasabb viszkozitás miatt a fagyállóval töltött rendszerek nyomásvesztesége akár 30-40%-al is több lehet.

Hőcserélő méretezése

Mivel a kollektorokban fagyálló folyadék kering, a fűteni kívánt közeg pedig rendszerint víz, ezért szükség van hőcserélő alkalmazására. Ez kisebb rendszereknél általában belső, tartályba beépített hőcserélő. Fontos azonban, hogy a hőcserélő felülete megfelelően nagy legyen. Ha kicsi a hőcserélő, akkor a kollektorok csak magasabb hőmérséklet-különbség mellett tudják átadni teljesítményüket a fűtött tároló vizének. A magasabb kollektor hőmérséklet pedig rosszabb kollektor hatásfokot, így kevesebb hasznosított napenergiát eredményez. A rosszul megválasztott hőcserélő akár 30-40%-ban is csökkentheti a kollektoros rendszer teljesítményét. Ennek elkerülése érdekében olyan hőcserélőt kell választani, hogy a belső hőcserélő/napkollektor felület viszonya legalább 0,2 legyen simacsöves hőcserélőnél, és 0,3-0,4 legyen ún. bordáscsöves hőcserélőnél.

Feltöltés, légtelenítés

A napkollektoros rendszert a kiépítés után fagyálló folyadékkal kell feltölteni, mégpedig úgy, hogy lehetőleg többet ne kelljen utánatölteni. Ez azért fontos, mert a fagyálló folyadékkal való feltöltés külön töltőszivattyút és szakértelmet is igényel. Ezt nem lehet rábízni a rendszer laikus tulajdonosára. Mindenképpen el kell kerülni azt is, hogy az esetleges nyomásesést a vízhálózatról való rendszeres feltöltéssel pótolják, mert ez a fagyálló folyadék ellenőrizhetetlen hígulását, végső soron a kollektorok szétfagyását okozhatja.

Szabályozás

A napkollektoros rendszerek szabályozásánál az alapvető feladat az, hogy a kollektor köri szivattyút a kollektorok és a fűtött közeg közötti hőmérséklet-különbség függvényében kell vezérelni. A szivattyú csak akkor járhat, ha a kollektorok hőmérséklete megfelelő értékkel magasabb a fűtött tároló hőmérsékleténél. Csak a kollektorok abszolút hőmérsékletének mérése (pl. egy termosztáttal) tehát nem elegendő.
A legegyszerűbb, ha a tároló fűtésére alkalmas szivattyús-napkollektoros rendszert is hőmérséklet-különbségre kapcsoló szabályozással látjuk el. Az ilyen szabályozáshoz minimum két érzékelő tartozik. Egyikkel a kollektorok, másikkal a fűtött tároló hőmérsékletét kell mérni. Nagyon fontos, hogy az érzékelők megfelelő módon, és megfelelő helyen legyenek. Fontos a tároló érzékelő elhelyezése is. A tárolókban a víz hőmérséklet szerint rétegződik, ezért nem mindegy, hogy milyen magasságban helyezik el az érzékelőt. Belső hőcserélő esetén a hőcserélő magasságában, külső hőcserélő esetén pedig a szívócsonk közelében kell mérni a tároló hőmérsékletét.

További érdekes cikkeinkről se maradsz le, ha követed az Ezermester Facebook oldalát, vagy előfizetsz a nyomtatott lapra, ahol folyamatosan újdonságokkal jelentkezünk!

Bérces Balázs


Szólj hozzá a cikkhez!

Be kell jelentkezned, hogy hozzászólhass a cikkekhez!
Ezermester, Facebook, vagy Google fiókkal is bejelentkezhetsz.

Szolár tároló választása

A megújuló energiát használó rendszerek egyik központi eleme a tároló. A melegvízkészítő rendszereknél (solar thermal és hőszivattyús) ez az egység a bojler vagy puffertároló.


Forgó állványos napelem

Az Ecoplant holland cég forgó napeleme egy négyfős háztartást egész évben képes ellátni árammal, és alkalmas elektromos járművek töltésére is. Az erős akkumulátorok akár 20 kWh energiát is...